Moments Of Clarity in Machine Learning for Jet Physics

Rikab Gambhir

Email me questions at rikab@mit.edu!

Based on [**RG**, Nachman, Thaler, [2205.03413](https://arxiv.org/abs/2205.03413)] [**RG**, Nachman, Thaler, [2205.05084](https://arxiv.org/abs/2205.05084)] [Ba, Dogra, **RG**, Tasissa, Thaler, [2302.12266](https://inspirehep.net/literature/2636321)] [**RG**, Thaler, Wu, WIP]

[**RG**, Osathapan, Tasissa, Thaler, [2403.08854](https://arxiv.org/abs/2403.08854)]

Rikab Gambhir – SLAC – 28 May 2024

1

Rarely is the question asked: Is our children learning?

- George W. Bush —

AZ QUOTES

Rarely is the question asked: Is our children learning? machines

- George W. Bush —

AZ QUOTES

Rarely is the question asked: Is our children learning? machines physicists using machines

- George W. Bush -

AZ QUOTES

Introduction

I want to study **jets** at the **Large Hadron Collider** (LHC). Jets are complicated!

I want to use **machine learning** (ML) to make my job easier, but with safeguards in place to make sure the physics I learn makes some sense!

This talk: 3 vignettes from my work in jet physics designing ML algorithms to give me exactly what I want.

Jets 101

…Jets have **rich latent structure** and subtle correlations – amenable to machine learning!

Jets are naturally represented as **point clouds** – amenable to machine learning!

a Marcollo

Energy Deposits We have **sophisticated detector models**

(Geant4) – amenable to machine learning!

Parton Bar
Partonal s
Parn? Hov wground for machine
tures for the machine
n we extract this inf Jet physics is an *excellent* playground for machine learning! Lots of high dimensional structures for the machine to learn!

 $\begin{array}{c} \hline \end{array}$ **Prove Strategy** an *I* learn? How earn!
ation? But what can *I* **learn? How can we extract this information?**

Sophisticated Detector Models Complicated Point Clouds Huge Latent Spaces

Sophisticated Detector Models Complicated Point Clouds Huge Latent Spaces

Based on: [**RG**, Nachman, Thaler, [2205.03413\]](https://arxiv.org/abs/2205.03413) [**RG**, Nachman, Thaler, [2205.05084\]](https://arxiv.org/abs/2205.05084)

Part I

Learning **Uncertainties** the **Frequentist** Way: Calibration and Correlation

Download our repo!

Try *pip install GaussianAnsatz*

energy *ẑ*

Measured particles *x*

What function does this? Machine learn it!

Rich existing literature!

Simulation based inference & Uncertainty Estimation: [Cranmer, Brehmer, Louppe 1911.01429; Alaa, van der Schaar 2006.13707;

Abdar et. al, 2011.06225; Tagasovska, Lopez-Paz, 1811.00908; And many more!]

Bayesian techniques: [Jospit et. al, 2007.06823; Wang, Yeung 1604.01662; Izmailov et. al, 1907.07504; Mitos, Mac Namee, 1912.1530; And many more!]

Measured particles *x*

What function does this? Machine learn it!

 $\overline{}$ arton with **estimated** energy *ẑ*

Deboalta

Problem Statement

Given a training set of (*x, z*) pairs, can we machine learn a function *f* such that $f(x) = z$? With uncertainties?

Yes. Extremely easily. This is just bread-and-butter least-squares regression with a neural network *g*:

Problem Statement

such that $f(x) = z$? With

Given a training set of **Not so fast!** Plearn a function *f*

Upon closer inspection, MSE gives us prior dependent neural regressions! Is this what we really want? Back to the drawing board!

with a classification problem, where the aim is to select a class from a list of classes (for example, where a picture

Calibration

Let's agree on what makes a good calibration, then design a loss for it!

1. Closure: On average, *f(x)* should be correct for each *x*! That is, *f* is **unbiased**.

$$
b(z) = \mathbb{E}_{\text{test}}[f(X) - z|Z = z]
$$

= 0

2. Universality: *f(x)* should not depend on the choice of sampling for *z*. That is, *f* is **prior-independent**.

Likelihood: Detector simulation, noise model, etc.

What if the detector simulation is imperfect? Ask me later!

Calibration

Our network should make it easy to extract unbiased h design a loss for it! estimates! (e.g. via maximum likelihood)

1. Closure: On average, *f(x)* should be correct for each *x*! That is, *f* is **unbiased**.

$$
b(z) = \mathbb{E}_{\text{test}}[f(X) - z|Z = z]
$$

= 0

2. Universality: *f(x)* should not Our loss should give us this likelihood!

> depend on the choice of sampling for *z*. That is, *f* is **prior-independent**.

f depends only on $p(x|z)$, and not $p(z)$

Likelihood: Detector simulation, noise model, etc

What if the detector simulation is imperfect? Ask me later!

loss!

Learning the likelihood

The **Donsker-Varadhan Representation (DVR)** of the KL divergence has been used in the statistics literature for mutual information estimation

$$
\mathcal{L}_{\text{DVR}}[T] = -\Big(\mathbb{E}_{P_{XZ}}[T] - \log \left(\mathbb{E}_{P_X \otimes P_Z} \left[e^T\right]\right)\Big) \Big)
$$

Interestingly, a nonlocal

Strict bound on *I(X;Z)*

21

What we want! $T(x, z) = \log \frac{p(x|z)}{p(x)}$ Minimized when **Unimportant**

Lots of other losses also work, but DVR has very nice convergence properties - ask me later!

Inference using *T*

22

We can use a neural net to parameterize *T(x,z)*, and use standard gradient descent techniques to minimize the DVR loss. Then we can do …

$$
\hat{z}(x) = \underset{z}{\operatorname{argmax}} T(x, z)
$$
\n
$$
\left[\hat{\sigma}_z^2(x)\right]_{ij} = -\left[\frac{\partial^2 T(x, z)}{\partial z_i \partial z_j}\right]_{z=\hat{z}}
$$
\nInference

\nGaussian Uncertainty Estimation

BUT!

- Maxima are hard to estimate even *more* gradient descent!
- Second derivatives are sensitive to the choice of activations in $T ReLU$ spoils everything!

We solve both problems with the **Gaussian Ansatz**

Rikab Gambhir – SLAC – 28 May 2024

 \sim \sim \sim \sim -1 .

The Gaussian Ansatz

23

Parameterize *T(x,y)* in the following way (the **Gaussian Ansatz**):

$$
T(x, z) = A(x)
$$

+ $(z - B(x)) \cdot D(x)$
+ $\frac{1}{2}(z - B(x))^{T} \cdot C(x, z) \cdot (z - B(x))$

Where *A(x), B(x), C(x,z), and D(x)* are learned functions. Then, if *D→0*, our inference and (Gaussian) uncertainties are given by …

$$
\hat{z}(x) = B(x) \qquad \qquad \hat{\sigma}_z^2(x) = -[C(x, B(x))]^{-1}
$$

No additional post processing or numerical estimates required!

Example 1: QCD and BSM Dijets

24

(Left) MSE-fitted network. (Right) Gaussian Ansatz-fitted network

Clever loss function choice: *Prior dependence is built-in!*

Example 2: Jet Energy Resolution

Best of both worlds: Using ML to extract more information^{*} than hand-crafted features, while still being able to extract resolutions in a prior-independent and unbiased way!

* I mean information literally. Ask me later about the cool information theory of the DV loss!

Part I Summary

By choosing the following loss:

$$
\mathcal{L}_{\text{DVR}}[T] = -\Big(\mathbb{E}_{P_{XZ}}[T] - \log\big(\mathbb{E}_{P_X \otimes P_Z}\left[e^T\right]\big)\Big)
$$

With the following network parameterization:

$$
T(x, z) = A(x)
$$

+ $(z - B(x)) \cdot D(x)$
+ $\frac{1}{2}(z - B(x))^{T} \cdot C(x, z) \cdot (z - B(x))$

We can get **unbiased**, **prior-independent** inference, and easily extract **maximum likelihood** and **resolution** estimates!

Based on: [Ba, Dogra, **RG**, Tasissa, Thaler, [2302.12266\]](https://inspirehep.net/literature/2636321) [**RG**, Thaler, Wu, WIP]

Part II Can you Hear the **Shape** of a Jet?

Download

our repo! Try *pip install pyshaper*

More generally: When are jets similar?

How alike are they?

Ɛ

Jets can be represented as **point clouds** – let's scour through the ML and computer vision literature for a metric on point clouds we like!*

Ɛ'

The Wasserstein Metric

Let's demand the following reasonable properties of our metric on point clouds:

- 1. … is nonnegative and finite
- 2. … is **IRC-safe*** (Calculable and robust)
- 3. … is translationally invariant
- 4. … is invariant to particle labeling
- 5. respects the detector metric *faithfully***

*Ask me for more details on this offline! ** Preserves distances between *extended* objects, not just points

Proved in [Ba, Dogra, **RG**, Tasissa, Thaler, [2302.12266](https://inspirehep.net/literature/2636321)] Ask me later for proof details! See also: [Komiske, Metodiev, Thaler, [1902.02346](https://arxiv.org/abs/1902.02346), Komiske, Metodiev, Thaler, [2004.04159](https://arxiv.org/abs/2004.04159)]

The Wasserstein Metric

Let's demand the following reasonable properties of our metric on point clouds:

- 1. … is nonnegative and finite
- 2. … is **IRC-safe*** (Calculable and robust)
- 3. … is translationally invariant
- 4. … is invariant to particle labeling
- 5. respects the detector metric *faithfully***

EMD = Work done to move "dirt" optimally

It turns out that the *only* metric that satisfies this is the **Wasserstein Metric / EMD**!

$$
\text{EMD}^{(\beta,R)}(\mathcal{E}, \mathcal{E}') = \min_{\pi \in \mathcal{M}(\mathcal{X} \times \mathcal{X})} \left[\frac{1}{\beta R^{\beta}} \left\langle \pi, d(x, y)^{\beta} \right\rangle \right] + |\Delta E_{\text{tot}}|
$$

$$
\pi(\mathcal{X}, Y) \le \mathcal{E}'(Y), \quad \pi(X, \mathcal{X}) \le \mathcal{E}(X), \quad \pi(\mathcal{X}, \mathcal{X}) = \min(E_{\text{tot}}, E'_{\text{tot}})
$$

A staple of computer vision ML is also useful for jets!

Shapes as Energy Flows

Energy flows don't have to be real events – they can be *any* energy distribution in detector space, or **shape**.

Can make anything you want! Even continuous or complicated shapes. (Or, something you calculate in perturbative QCD)

Shapiness

The EMD between a real event or jet *Ɛ* and idealized shape *Ɛ'* is the [shape]iness of \mathcal{E} – a well defined IRC-safe observable!

Mathematical Details - Shapiness

Rather than a single shape, consider a **parameterized manifold** M of **energy flows.**

e.g. The manifold of uniform circle energy flows:

$$
\mathcal{E}_{\theta}'(\mathsf{y}) = \begin{cases} \frac{1}{2\pi r_{\theta}} & |\vec{y} - \vec{y}_{\theta}| = r_{\theta} \\ 0 & |\vec{y} - \vec{y}_{\theta}| \neq r_{\theta} \end{cases}
$$

Then, for an event *Ɛ*, define the \boldsymbol{s} **hapiness** $\mathcal{O}_\mathcal{M}$ **and shape parameters** $\theta_{_{\mathcal{M}^{\prime}}}$ given by:

35

$$
\mathcal{O}_{\mathcal{M}}(\mathcal{E}) \equiv \min_{\mathcal{E}_{\theta} \in \mathcal{M}} \text{EMD}^{(\beta, R)}(\mathcal{E}, \mathcal{E}_{\theta})
$$

$$
\theta_{\mathcal{M}}(\mathcal{E}) \equiv \operatorname*{argmin}_{\mathcal{E}_{\theta} \in \mathcal{M}} \text{EMD}^{(\beta, R)}(\mathcal{E}, \mathcal{E}_{\theta})
$$

This is basically just a W-GAN!

Fitting a 2D image distribution with a fully flexible generative neural network

Fitting a 2D point cloud with a small parameterized generator

Rather than using a fully-flexible neural network to fit our distributions with the Wasserstein metric, as in a W-GAN, we craft specific parameters of interest!

[P. Komiske, E. Metodiev, and J. Thaler, 2004.04159; J. Thaler, and K. Van Tilburg, 1011.2268; I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, 1004.2489.; S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, PRL 12 (1964) 57-61; C. Cesarotti, and J. Thaler, 2004.06125]

Observables ⇔ Manifolds of Shapes

Observables can be specified solely by defining a **manifold of shapes**:

 $\mathcal{O}_{\mathcal{M}}(\mathcal{E}) \equiv \min_{\mathcal{E}_{\theta} \in \mathcal{M}} \text{EMD}^{(\beta,R)}(\mathcal{E}, \mathcal{E}_{\theta}),$ $\theta_{\mathcal{M}}(\mathcal{E}) \equiv \operatorname*{argmin}_{\mathcal{E}_{\theta} \in \mathcal{M}} \text{EMD}^{(\beta,R)}(\mathcal{E}, \mathcal{E}_{\theta}),$

Many well-known observables^{*} already have this form!

All of the form "How much like **[shape]** does my **event** look like?" Generalize to *any* shape.

*These observables are usually called event shapes or jet shapes in the literature – we are making this literal!

Hearing Jets Ring

(and Disk, and Ellipse)

 $\mathcal{O}_{\mathcal{M}}(\mathcal{E})$ answers: "How much like a shape in $\mathcal M$ does my event $\mathcal E$ look like?"

 $\theta_{\mathcal{M}}(\mathcal{E})$ answers: "Which shape in $\mathcal M$ does my event *Ɛ* look like?"

Can define complex manifolds to probe increasingly subtle geometric structure!

Some examples of new shapes you can define!

[see also L., B. Nachman, A. Schwartzman, C. Stansbury, 1509.02216; see also B. Nachman, P. Nef, A. Schwartzman, M. Swiatlowski, C. Wanotayaroj, 1407.2922; see also M. Cacciari, G. Salam, 0707.1378]

New IRC-Safe Observables

The *SHAPER* framework makes it easy to algorithmically invent new jet observables!

e.g. *N-(***Ellipse+Point)iness+Pileup** as a jet algorithm:

- Learn jet centers + collinear radiation
- Dynamic jet radii (no *R* parameter!)
- Dynamic eccentricities and angles
- Dynamic jet energies
- Dynamic pileup (no z_{cut} parameter!!!)
- Learned parameters for discrimination

Can design custom specialized jet algorithms to learn jet substructure!

40

[**RG**, Thaler, Wu; WIP]

Back to our question: How Big are Jets?

We can now answer this question in a precise way!

Part II Summary

By choosing the following loss function:

$$
\text{EMD}^{(\beta,R)}(\mathcal{E}, \mathcal{E}') = \min_{\pi \in \mathcal{M}(\mathcal{X} \times \mathcal{X})} \left[\frac{1}{\beta R^{\beta}} \left\langle \pi, d(x, y)^{\beta} \right\rangle \right] + |\Delta E_{\text{tot}}|
$$

$$
\pi(\mathcal{X}, Y) \le \mathcal{E}'(Y), \quad \pi(X, \mathcal{X}) \le \mathcal{E}(X), \quad \pi(\mathcal{X}, \mathcal{X}) = \min(E_{\text{tot}}, E'_{\text{tot}})
$$

Based on IRC-safety and geometric faithfulness, we can build well-defined and robust observables that quantify *targeted* geometric properties of point clouds!

We can make jet shapes well defined!

Based on: [**RG**, Osathapan, Tasissa, Thaler, [2403.08854\]](https://arxiv.org/abs/2403.08854)

Part III Moments of Clarity: Streamlining Latent Spaces

Given the final measured **point cloud**, was the **initiating parton** a **quark** or a **gluon**?

A staple machine learning task!

Typical Machine Learning Setup

Deep Learning on Point Clouds

The **Deep Sets Theorem** tells us how to parameterize functions on point clouds^{*}:

$$
\mathcal{O}(\mathcal{P}) = F \left(\langle \phi^a \rangle_{\mathcal{P}} \right) \underbrace{\overset{\text{Set of momenta}}{\text{Ine Deep Sets Theore}}}_{\langle \phi \rangle_{\mathcal{P}} \equiv \sum z_i \phi(\hat{p}_i)}
$$

45

Deep Sets Theorem guarantees that any ction on sets ${\mathscr P}$ can be written this way, for fficiently complex" F and ϕ and large enough L .

For this talk, I will focus primarily on Energy Flow Networks (EFNs) where the sums are energy-weighted.

*More sophisticated architectures still reduce to Deep Sets in some limit, e.g. graph networks

Deep Learning on Point Clouds

The **Deep Sets Theorem** tells us how to parameterize functions on point clouds^{*}:

Set of momenta
\n
$$
\mathcal{O}(\mathcal{P}) = F(\langle \phi^a \rangle_{\mathcal{P}}) \underbrace{\phantom{ \mathcal{O}(\mathcal{P}) \oplus \mathcal{O}(\mathcal{P}) \oplus \mathcal{O}(\mathcal{P})}_{\text{function on sets } \mathcal{P} \text{ car}}}_{\text{conifliciently complex}^n}
$$

46

leep Sets Theorem guarantees that any on on sets ${\mathscr P}$ can be written this way, for S iently complex" *F* and ϕ and large enough *L*.

But how complex do F and ϕ need to be? Can I reduce the number of latent dimensions?

For this talk, I will focus primarily on Energy Flow Networks (EFNs) where the sums are energy-weighted.

*More sophisticated architectures still reduce to Deep Sets in some limit, e.g. graph networks

Moment Pooling

$$
\mathcal{O}(\mathcal{P})=F\left(\langle\phi^a\rangle_{\mathcal{P}}\right)
$$

47

Generalize to more moments! "**Moment Pooling**"

$$
\mathcal{O}_k(\mathcal{P}) = F_k \left(\langle \phi^a \rangle_{\mathcal{P}}, \langle \phi^{a_1} \phi^{a_2} \rangle_{\mathcal{P}}, ..., \langle \phi^{a_1} ... \phi^{a_k} \rangle_{\mathcal{P}} \right)
$$
\n
$$
\xrightarrow{\text{is Moment}} \xrightarrow{\text{d}^{\text{at} \text{Moment}}} \xrightarrow{\text{d}^{\text{at} \text{Moment}}} \xrightarrow{\text{d}^{\text{at} \text{Moment}}} \xrightarrow{\text{d}^{\text{th} \
$$

$$
\text{Example: } 2^{\text{nd} } \text{ Moment} \quad \langle \Phi^{a_1} \Phi^{a_2} \rangle_{\mathcal{P}} = \sum_{i \in \mathcal{P}} z_i \Phi^{a_1}(x_i) \Phi^{a_2}(x_i)
$$

Moment Pooling – Why?

- **Explicit Multiplication**: Neural nets are mostly piecewise linear! But most functions we learn aren't. Moments are just multiplication, but for distributions!
- **Latent Space Compression**: For large *L*, there are effectively *L*^k latent dimensions due to combinatorics, but still made of only *L* functions! Fewer latent dimensions means easier analysis!

Moment Pooling Results

*Interestingly, the performance is constant in the *effective* latent dimensions and number of parameters. Ask me about this!

The Black Box

Latent Spaces

the same top performance on $L = \Gamma N (K - 1)$
 $I = 428$
 $I = 64$ EFN (*k = 1) L = 128*

k = 2 L = 64

*Interestingly, the performance is constant in the *effective* latent dimensions and number of parameters. Ask me about this!

50 Rikab Gambhir – SLAC – 28 May 2024

Azimuthal Angle ϕ

*Interestingly, the performance is constant in the *effective* latent dimensions and number of parameters. Ask me about this!

Moment Pooling Results (Cont'd)

Let's instead look at networks with just a *single* latent dimension.

A *k = 4* **Moment EFN** with *just one* latent dimension does just as good as an **ordinary EFN** with *four* latent dimensions!

Going down to *L = 1*

The more efficient encoding is extremely useful when we can get to *L = 1*! Look how much simpler allowing neural networks to multiply makes things!

The Moment of Truth

 $\Phi_{\mathcal{L}}(r) = c_1 + c_2 \log(c_3 + r)$

This defines a **log angularity** observable, related to the $\Box \rightarrow 0$ limit of ordinary angularities

We can even see non perturbative physics!

 $c_3 \sim \frac{\Lambda_{\rm QCD}}{p_T R} \sim 0.001$

Just this alone is enough to get an IRC-safe quark-gluon classifier with an AUC \sim 0.83!

54

Part III Summary

By choosing the following new architecture for Deep Sets:

$$
\mathcal{O}_k(\mathcal{P}) = F_k\left(\langle \phi^a \rangle_{\mathcal{P}}, \langle \phi^{a_1} \phi^{a_2} \rangle_{\mathcal{P}}, ..., \langle \phi^{a_1} ... \phi^{a_k} \rangle_{\mathcal{P}}\right)
$$

We expand the basis of primitive operations to include multiplication, allowing for **streamlined latent spaces** that are easier to extract physics information from!

Order
$$
k = 4L = 1
$$

Part IV: Conclusion

Things a **machine** can understand

Things a **machine** can understand

Sophisticated Detector Models Complicated Point Clouds Huge Latent Spaces **MOD** MIT Open Data

Main Takeaway: By using purpose-built machine learning architectures and losses, we can make sure we extract the **physics we want** from our machines!

Email me questions at rikab@mit.edu!

Based on [**RG**, Nachman, Thaler, [2205.03413](https://arxiv.org/abs/2205.03413)] [RG, Nachman, Thaler, [2205.05084](https://arxiv.org/abs/2205.05084)] [Ba, Dogra, **RG**, Tasissa, Thaler, [2302.12266\]](https://inspirehep.net/literature/2636321) [**RG**, Thaler, Wu, WIP] [**RG**, Osathapan, Tasissa, Thaler, [2403.08854](https://arxiv.org/abs/2403.08854)]

Any Questions?

Can a robot understand jet physics? Can it understand QCD?

Learning MLC

How do we calculate *f*?

$$
f_{\rm MLC}(x) = \operatorname*{argmax}_{z} p_{\text{train}}(x|z)
$$

$$
= \operatorname*{argmax}_{z} \log \frac{p_{\text{train}}(x, z)}{p_{\text{train}}(x)p_{\text{train}}(z)}
$$

Class P

Class Q

The function *T* is the likelihood ratio between *p(x,z)* and *p(x)p(z)*.

Neyman–Pearson

T is the **optimal classifier** between (*x*,*z*) pairs and shuffled (*x*,*z*) pairs!

Classify between *P* and *Q*!

Aside: Mutual information

A measure for non-linear interdependence is the **Mutual Information**:

$$
I(X; Z) = \int dx dz p(x, z) \log \frac{p(x, z)}{p(x) p(z)}
$$

= $\mathbb{E}_{\text{train}} T(X, Z)$

Answers the question: How much information, in terms of bits, do you learn about *Z* when you measure *X* (or vice versa)?

When doing calibration this way, we get a measure of the **correlation** between *X* and *Z*, *for free*.

Example 1: Gaussian Calibration Problem

Gaussian noise model: $p(x|z) \sim N(z, 1)$

Model:

- The *A*, *B*, *C*, and *D* networks are each Dense networks with 4 layers of size 32
- **ReLU** activations
- All parameters have an L2 regularization $(\lambda = 1e-6)$
- The D network regularization slowly increased to $(\lambda_{D} = 1e-4)$

Learned mutual information of 1.05 natural bits

Reproduces the expected maximum likelihood outcome and the correct resolution!

63

Example 1 - Prior Independence

 $P(z) \sim N(0, 2.5)$ **P(z)** $\sim U(-5, 5)$

Example 3: Jet Energy Calibrations

Measure a set particle flow candidates *x* in the detector. What is the underlying jet p_{T} , *x*, and its uncertainty?

Define the **jet energy scale (JES)** and **jet energy resolution (JER)** as the ratio of the underlying (GEN) jet p_{τ} (resolution) to the measured total (SIM) jet p_{τ}

 $\hat{p}_T \equiv \text{JEC} \times p_{T, \text{SIM}} \approx p_{T, \text{GEN}}$ $\hat{\sigma}_{p_T} = JER \times p_{T,SIM}$

Example 3: Models

- **DNN**: $X = (\text{Jet } p_{T}^{\prime}, \text{Jet } \eta, \text{Jet } \phi)$, Dense Neural Network
- **EFN:** $X = \{ (PFC \ p_{T}, PFC \ \eta, PFC \ \phi) \}$, Energy Flow Network
- **PFN:** $X = \{ (PFC \ p_{T}, PFC \ \eta, PFC \ \phi) \}$, Particle Flow Network
- **PFN-PID**: $X = \{ (PFC \ p_{T}, PFC \ \eta, PFC \ \varphi, PFC \ PD) \},$ Particle Flow Network

For each model, *A(x)*, *B(x)*, *C(x,z)*, and *D(x)* are all of the same type.

66

Permutation-invariant function of point clouds For EFN's, manifest IRC Safety

Details on hyperparameters can be found in [**RG**, Nachman, Thaler, [PRL 129 \(2022\) 082001](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.082001)]

[Komiske, Mastandrea, Metodiev, Naik, Thaler, PRD 2020; Larkoski, Marzani, Thaler, Tripathee, Xue, 1704.05066; Cacciari, Salam, Soyez, 0802.1189; http://opendata.cern.ch/]

Example 3: Jet Dataset

Using CMS Open Data:

- *CMS2011AJets* Collection, SIM/GEN QCD Jets (AK 0.5)
- Select for jets with 500 GeV < Gen p_{τ} $<$ 1000 GeV, |η| < 2.4, quality ≥ 2
- \bullet Select for jets with ≤ 150 particles
- Jets are rotated such that jet axis is centered at (0,0)
- Train on 100k jets

Jet Energy Scales

For jets with a true $\bm{\rho}_{\mathcal{T}}$ between 695-705 GeV, we should expect well-trained models to predict 700 GeV on average!

Close to 1.00 – unbiased estimates!

69

Data Based Calibration

"What if my detector simulation *p(x|z)* is imperfect"?

Given a *bad* simulator $p_{\text{SIM}}(x|z)$, we can correct it by matching it to data:

$$
\hat{p}(x_D|z_T) = p_{\text{sim}}(h(x_D)|z_T)|h'(x_D)|
$$

Where

$$
h(x_D) = P_{\text{data}}^{-1}(P_{\text{sim}}(x_D))
$$

The function *h* "optimally transports" points to where they belong and reweights them.

```
Rikab Gambhir – SLAC – 28 May 2024
```


70

Data Based Calibration

BUT! There is a cost. We have to give up prior independence.

"Fixing" the Delphes simulation to match Geant4 works when trained on **Prior 1 (QCD)**, but fails miserably when applied to **Prior 2 (BSM)**, despite being the same detector simulation!

No (known) method of prior independent DBC, but no proof it is impossible!

Prior dependence of MSE

MSE fits for a gaussian noise model, for different choices of *z* prior.

Left: Different choices of mean Right: Different choices of width

Mathematical Details – Topology

Definition (The **Weak* Topology**): A sequence of measures converges if all of their expectation values converge, as real numbers.

Definition (**Weak^{*} Continuity**): An observable $O(E)$ is continuous with respect to energy flows if, for any sequence of measures ε _n that converges to ε , the sequence of real numbers $\mathcal{O}(\mathcal{E}_n)$ converges to $\mathcal{O}(\mathcal{E})$.

72

Topology ⇔ IRC-Safety

Two ways to change the expectation values of an energy flow:

- 1. Change a particle's energy slightly, or add a low-energy particle **IR**
- 2. Move a particle's position slightly, or split particles in two **C**

An observable $\mathcal O$ is continuous if it changes only slightly under the above perturbations.

The regions of phase space causing IRC divergences is suppressed \varnothing is **IRC-Safe**!

Rikab Gambhir – SLAC – 28 May 2024

Mathematical Details - Geometry

When are two events similar? We need a metric to compare!

Properties we want:

 π

74

- 1. … is non-negative, non-degenerate, symmetric and finite
- 2. … is weak* continuous (IRC-safe)
- 3. … lifts the detector metric **faithfully**

The only* metric on distributions satisfying the above is the **Wasserstein Metric**:

$$
\text{EMD}^{(\beta,R)}(\mathcal{E}, \mathcal{E}') = \min_{\pi \in \mathcal{M}(\mathcal{X} \times \mathcal{X})} \left[\frac{1}{\beta R^{\beta}} \left\langle \pi, d(x, y)^{\beta} \right\rangle \right] + |\Delta E_{\text{tot}}|
$$

$$
(\mathcal{X}, Y) \le \mathcal{E}'(Y), \quad \pi(X, \mathcal{X}) \le \mathcal{E}(X), \quad \pi(\mathcal{X}, \mathcal{X}) = \min(E_{\text{tot}}, E'_{\text{tot}})
$$

Explained shortly!

*There exist other metrics on distributions that are faithful only for very specific real-space distance norms, but we want them all!

Rikab Gambhir – SLAC – 28 May 2024

*Thanks to Cari Cesarotti for helping come up with this name. Proved in [Ba, Dogra, **RG**, Tasissa, Thaler, [2302.12266](https://inspirehep.net/literature/2636321)]

The Importance of Being Faithful*

A metric on events is **faithful** if, whenever two otherwise identical events *Ɛ* and *Ɛ'* are separated in real space by a distance *d*, the distance between the events is also *d*. Or any predetermined invertible function of *d*

Faithfulness also ensures very nice **numerical properties**, including no vanishing or exploding gradients.

Rikab Gambhir – SLAC – 28 May 2024

75

New IRC-Safe Observables

76

… **Lots** of extractable information!

Rikab Gambhir – SLAC – 28 May 2024

Automatic Grooming with Shapes

Can also consider ellipses instead of disks – only marginally better performance

Rikab Gambhir – SLAC – 28 May 2024

77

| **Rikab Gambhir – SLAC – 28 May 2024**

Attention is all you need

 \sim

Can view moment pooling as a multi-headed self-attention-like mechanism Each latent variable weights each other latent variable

 $\boldsymbol{\mathsf{H}}$

